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Abstract— Recent progress in 3-D capture technology has made it pos-
sible to obtain much of realistic motion data of human subjects. Being
captured in high frame rates, compression or extraction of key postures
out of the motion data is useful for storage, transfer and browsing among
them: this can serve as an important pre-processing for applications such
as rehabilitation, ergonomics and sports physiology. This paper addresses
these problems by treating the motion data as trajectory curves in a high-
dimensional space and doing a novel application of a curve simplification
algorithm, typically used for planar curves, to human motion data.
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I. INTRODUCTION

Recent development of capture technology for human motion
data has resulted in much use of it in motion analysis and syn-
thesis [1][2][5][10]. While video sequences provide those pro-
jected onto 2D image planes, the capture technology based on
magnetic or optical devices makes it easier to get 3D motion data
such as positions or orientations. Analysis or synthesis based
on the captured data benefits rehabilitation, ergonomics, sports
physiology and many other applications. Being captured in high
frame rates, efficient storage and browsing of the data are, hence,
important analogously to those of other multidimensional data
such as images and video sequences. This paper addresses the
problems by treating the motion data as high-dimensional curves
and running a curve simplification algorithm to them. We ap-
plied this technique to compression of the motion data and au-
tomatic extraction of key postures summarizing the motion con-
tent.

Section II describes a curve simplification algorithm typically
applied to planar curves in 2 dimension. Treating the human
motion data as trajectory curves of high dimensions, the sim-
plification algorithm is shown applicable to the motion data and
experimental results for the compression and the summarization
are presented in section III. Discussion and conclusion follow
it.

II. CURVE SIMPLIFICATION ALGORITHM

Curve simplification has been used in cartography, computer
graphics, pattern recognition, image processing, computer vi-
sion and computational geometry. Given a curve as a chain of
line segments, a simplification algorithm generates an approxi-
mation of it with a smaller number of vertices.

For our application, we chose Lowe’s algorithm [6] which
outperforms other algorithms for curve simplification according
to an assessment [8]. The algorithm approximates the polygonal
chain by selecting a subset of vertices from the original chain.

Fig. 1. Curve simplification. (Left column) step-by-step visualization of the
simplification with a given error tolerance. (Right column) Results of the
simplification to the same curve but with different error tolerances.

The line segments defined by the selected vertices form a can-
didate for the final approximation chain. In the beginning, the
algorithm approximates the polygonal chain by one straight line
segment that connects its two endpoints. This approximation is
tested using a distance criterion: the maximum deviation of any
point from the line divided by the length of the line segment. If
the criterion is not satisfied, the line segment is sub-divided into
two segments at the curve point most distant from the straight
line segment. This procedure is recursively repeated until the re-
sulting approximation satisfies the error tolerance specified for
the given distance criterion (see Figure 1.)

Notice that, though typically used for planar curves in 2 di-
mension, the simplification algorithm does not depend on the
dimension of the curve to be simplified: it only needs the dis-
tance from a point to a line. Hence, we are able to run the algo-
rithm to curves in higher dimensions to simplify them.

III. RESULTS

We used motion data of a human subject tracked by magnetic
devices: position of the subject and orientations of its joints
over time. A model based on specification for a standard hu-
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HumanoidRoot
l_shoulder r_shoulder

l_elbow r_elbow
l_hip r_hip

l_knee r_knee
l_ankle r_ankle

vc2 vt10
sacroiliac vl5

TABLE I

THE 15 JOINTS DRIVEN BY THE CAPTURED MOTION DATA.

manoid[4] was used to visualize the captured motion data (Fig-
ure 3.) Among 57 joints in the body, 15 joints were driven by
the captured data (Table I.)

Orientation of each joint, i.e., an rotation axis and an angle
around it, can be casted as a 4 dimensional point. Since the
values of orientations change over time, motion in orientation
can be considered as trajectory curves in a 4+1 dimensional
space: the extra dimension by time. By running the curve al-
gorithm to each of the motion curves, we are able to simplify
them and reduce the size of the motion data (Figure 2.) Though
the size of the simplified motion reduces with increasing error
tolerance (Figure 2), its visual quality does not degrade until the
size reaches about 20% of the original one: the simplified one is
hardly distinguishable from the original one (Figure 3.)

Instead of a set of trajectory curves for the joint orientations,
the motion data can also be considered as a single curve in a
higher N +1 dimensional space. The whole posture of the body
at a time can be represented by the values of orientations of each
joint and therefore a point in a N dimensional space: for our
case, N = 15 × 4. The simplification algorithm on this higher
dimensional curve results in a set of key postures which can be
used for visual summarization of the motion data. As shown in
Figure 4 (a), the proposed method adaptively samples the key
postures depending on the motion content: most of the key pos-
tures belong to the first half of the time interval where much of
change in postures occur. Contrary to this adaptive sampling,
an uniform sampling includes many of redundant postures from
the second half of the time interval while missing some of the
important postures as in Figure 4 (b): for example, it cannot tell
whether the body turns left or right before showing the back.

IV. DISCUSSION AND CONCLUSION

Curve fitting is a standard approach for the compression of
captured motion data [9][10]. For example, a set of non-uniform
B-splines curves are fitted to the motion data [9]: a B-spline
curve is a piecewise polynomial with a set of coefficients. This
fitting technique determines and keeps the coefficients which do
not serve as a visual summary of the motion data. Our approach
of curve simplification, on the other hand, can determine and
keep a subset of postures comprising the given motion data.
Therefore, it is useful either for the compression or the visual
summary, the latter of which should be applicable in browsing a
set of captured motion data.

A similar technique of curve simplification [7] has been ap-
plied to summarization of video sequences [3]. For biomedical

5 10 15
error(%)

5

10

15

20

25

30

data size(%)

Fig. 2. Data size of the simplified motions over the error tolerance.
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Fig. 3. (a) Original motion, (b) Simplified one with 0.5% error tolerance and
22.4% size of the original one. Notice that the last postures show a slight
difference between them otherwise visually indistinguishable.

application, however, it has limited potential since a video se-
quence is not an inherent representation of human motion: not
only the motion content but also camera view angle, lighting
and many others affect the video content. A feature vector for a
video sequence, therefore, has to be carefully crafted [3]. This
contrasts with our application to 3D human motion data which
are both view and lighting independent.

A novel application of a curves simplification algorithm to
human motion data was presented. It treated the motion data as
trajectory curves in high dimensions and ran the simplification
algorithm to the curves. The experimental results showed its
usefulness in either compression or visual summary of the data,
which can serve as a useful pre-processing of human motion
data for rehabilitation, ergonomics and sports physiology.
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Fig. 4. Automatic extraction of key postures, adaptive vs. uniform. Each of the horizontal bars indicates the time when its posture is shown during the playback of
the animation. (a) A hierarchy of key postures adaptively sampled by the curve simplification method. Four sets or rows of the key postures with different error
tolerances: the smaller error tolerance, the more numbers of key postures. (b) A naive extraction of key postures by sampling uniformly in time.
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